
AmigaTalk

AmigaTalk ii

COLLABORATORS

TITLE :

AmigaTalk

ACTION NAME DATE SIGNATURE

WRITTEN BY July 10, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaTalk iii

Contents

1 AmigaTalk 1

1.1 AmigaTalk© 1998-2000 User Manual: . 1

1.2 Unfinished business: . 2

1.3 User Classes for AmigaTalk© 1998: . 3

1.4 Bugs known to the Author of AmigaTalk: . 3

1.5 File System Configuration: . 4

1.6 AmigaTalk requirements: . 6

1.7 NO warranty for AmigaTalk: . 6

1.8 If it don’t work, you’re to blame: . 7

1.9 AmigaTalk distribution: . 9

1.10 Running the system: . 9

1.11 System Directives: . 10

1.12 Parse Button Behavior: . 11

1.13 Format for Env file: . 11

1.14 AmigaTalk icon ToolTypes: . 11

1.15 System Directive)e (Editor): . 12

1.16 System Directive)g (Read): . 12

1.17 System Directive)i (Include class): . 13

1.18 System Directive)l (Load): . 13

1.19 System Directive)r (Read): . 13

1.20 System Directive)s (Save): . 13

1.21 System Directive)! (Shell): . 14

1.22 System Differences: . 14

1.23 Appendix 1 - Class Descriptions: . 17

1.24 Appendix 2 - Manual page: . 18

1.25 Appendix 3: . 21

1.26 Appendix 4 - Primitive Numbers: . 22

1.27 Author Information: . 28

1.28 Bibliography: . 28

AmigaTalk 1 / 28

Chapter 1

AmigaTalk

1.1 AmigaTalk© 1998-2000 User Manual:

This manual is intended as an aid in using the AmigaTalk©

system. It is not intended to be used as an introduction to

the SmallTalk language. AmigaTalk© is largely (with exceptions listed

in a later section) a subset of the SmallTalk-80* language

described in SmallTalk blue

A complete description of the classes included in the AmigaTalk system

and the messages they accept is given in Appendix 1

AmigaTalk was generated from Little Smalltalk V1.0, written by

Timothy Budd. I know that there are more modern versions of Little

Smalltalk in existence; however, they load & save system image files

in a binary format that is not documented.

Requirements What type of system do I need?

File System Configuration

Warranty

Distribution

Startup

What can you do with AmigaTalk? Check these out:

General Classes

Intuition Classes

System Classes

User Classes

TheBrowser Browser OverView.

System Directives

System Differences

Appendix 2 (Manual page)

AmigaTalk 2 / 28

Appendix 3 (Example Class description)

Appendix 4 (Primitive numbers)

Author

Bibliography

Still to do... (Unfinished business)

Known BUGS

* Smalltalk-80 is a trademark of the Xerox Corporation.

1.2 Unfinished business:

The following parts of the AmigaTalk© program still need work:

1. Verify that TheBrowser is 100% bug-free.

2. Complete program documentation.

3. Write code for loading & saving system image files.

(see)l filename &)s filename)

4. Need to add Class files (System/) for:

Devices

Audio

Narrator

Clipboard

Console

Keyboard

Input

Parallel

Printer

SCSI

Timer

TrackDisk

Processes

Tasks

Memory

Lists

Interrupt

Semaphore

Signal

Exception

ARexx

5. Need to add Class files (Intuition/) for:

AreaPaint

IStruct

Animation

IFF

AmigaTalk 3 / 28

1.3 User Classes for AmigaTalk© 1998:

The following user classes were written by me (Author) for the

AmigaTalk system & are documented herein:

Complex

Curses

Fraction

Please feel free to dream up your own bunch of Classes to add to

the system.

1.4 Bugs known to the Author of AmigaTalk:

The following bugs are inherited from the implementation of the

Little Smalltalk source code:

1. Assigning a block to a variable will usually cause memory reference

cycles, resulting in the number of increments and decrements not

being equal following execution.

(not really a bug, caused by the implementation - blocks need to

access the context, which includes the local variables, which

includes the block, which needs to access the context ...).

2. The stack size allocated by the parser is fixed. It should be

computed by the parser and varied for different methods.

3. If you modify the class AmigaTalk (and thereby the pseudo-variable

amigatalk) the pseudo-variable does not get properly initialized.

4. Because of bootstrapping peculiarities, a few classes (such as

Object or Symbol or String) do not respond to the message

variables correctly.

5. The Parser is NOT smart enough to recognize when you’ve created a

conflict with the names of variables. Example:

Class Broken :Object

! nameConflict secondConflict !

[

firstMethod: nameConflict ! secondConflict !

...

]

Make sure that instance variables & method parameters don’t have the

same name. The Parser will compile your Class without complaining

but there will be a run-time error in your class that won’t be easy

to find!

AmigaTalk 4 / 28

1.5 File System Configuration:

This is the layout of the AmigaTalk environment that you need to have

in order to suppress un-wanted requester activity:

Assign AmigaTalk: to a directory or partition: DH0:AmigaTalk/ (example)

AmigaTalk -- The main program.

AmigaTalk.info -- The main program icon.

AmigaTalk.env -- The Screen & Window startup values.

(See DisplayEnvFile)

Sub-directories of AmigaTalk:

Browser/ The user should NOT play with the

GeneralClasses files in this directory, TheBrowser

GeneralClassInstanceVars uses these files & expects a certain

GeneralMethodsInstanceVars structure to them. TheBrowser will

IntuitionClasses maintain them for you.

IntuitionClassInstanceVars

IntuitionMethodsInstanceVars

SystemClasses

SystemClassInstanceVars

SystemMethodsInstanceVars

UserClasses

UserClassInstanceVars

UserMethodsInstanceVars

C/

AmigaTalk.iff (See -i command switch)

CursesHail.st No longer used.

DisplayLogo (See -i command switch)

Parse - Part of the Original Little SmallTalk system.

TheBrowser - CanDo Class-Browsing deck.

TheBrowser.info

CodeLib/ CodeLib/ is Currently empty.

Help/

AmigaTalk.guide - This file.

AmigaTalk.guide.info

ATHelper.guide

GeneralClasses.guide

Intuition.guide

System.guide

SystemDiagram.iff A picture of how the program is connected.

AmigaTalk 5 / 28

User-supplied (meaning the Author) Classes:

Complex.guide

Curses.guide

Fraction.guide

TheBrowser.guide

ATalkARexx.guide

General/ (Source files for general classes)

AmigaTalk.st

Array.st

ArrayedCollection.st

Bag.st

Block.st

Boolean.st

ByteArray.st

Char.st

Class.st

Collection.st

Dictionary.st

False.st

File.st

Float.st

Form.st

Integer.st

Interval.st

KeyedCollection.st

larray.st

List.st

Magnitude.st

Number.st

Object.st

Pen.st

Point.st

Process.st

Radian.st

Random.st

Semaphore.st

SequenceableCollection.st

Set.st

String.st

AmigaTalk 6 / 28

Symbol.st

True.st

UndefinedObject.st

Intuition/

intuition.p

Prelude/

standard

System/

system.p

User/

Complex.st

Curses.st

Fraction.st

user.p

1.6 AmigaTalk requirements:

REQUIREMENTS

~~~~~~~~~~~~

AmigaTalk uses DeckRunner which is Copyrighted (c) by InovaTronics.

I’ve included a copy of it with my distribution. It should be placed

in the command path where the Amiga OS can find it (example: C:)

It also requires the cando.library & CandoGFX.library. Let me know if

you have trouble obtaining a copy of these.

68020 or better microprocessor.

AmigaDOS 3.1+

Hard disk.

1.7 NO warranty for AmigaTalk:

NO WARRANTY

~~~~~~~~~~~

There is no warranty for this software package. Although the Author

has tried to prevent errors, he can’t guarantee that the software

package described in this document is 100% reliable. In fact, I can

certainly guarantee that there are some problems in the code. You are

therefore using this material at your own risk. The author cannot be

held responsible for any damage which is caused by using this software

package. Hey, what do you want for free?

(See Disclaimers)

I would appreciate any bug reports & I would suggest that you send them

via e-mail to my attention: jsteic1957@aol.com

AmigaTalk 7 / 28

1.8 If it don’t work, you’re to blame:

You get to figure out which ones apply to this program ;)

No other warranty expressed or implied.

List was current at time of printing.

This supersedes all previous notices.

This information is subject to change without notice.

All rights reserved.

Do not purchase if seal has been tampered with.

Contents under pressure. Do NOT incinerate.

Some assembly required.

List each check separately by bank number.

Batteries not included.

Some settling of contents may occur during shipping.

Use only as directed.

Do not use while operating a motor vehicle or heavy equipment.

This product is meant for educational purposes only.

Postage will be paid by addressee.

This is not an offer to sell securities.

Apply only to affected area.

May be too intense for some viewers.

Do not stamp.

For recreational use only.

All models over 18 years of age.

If condition persists, consult your physician.

No user-serviceable parts inside.

Times approximate.

Simulated picture.

Breaking seal constitutes acceptance of agreement.

One size fits all.

Contains a substantial amount of non-tobacco ingredients.

Colors may, in time, fade.

We have sent the forms which seem to be right for you.

Slippery when wet.

Parental guidance suggested.

Do not bend, fold, spindle, or mutilate.

We reserve the right to refuse service to anyone.

Use unleaded fuel only.

Not affiliated with the American Red Cross.

AmigaTalk 8 / 28

Drop in any mailbox.

Edited for television.

Keep cool; process promptly.

Post office will not deliver without postage.

Not responsible for direct, indirect, incidental or consequential

damages resulting from any defect, error or failure to perform.

No part of this publication may be reproduced in any form or by any

means without the prior written permission of the publisher.

Some of the trademarks mentioned in this product appear for identi-

fication purposes only.

At participating locations only.

Your mileage may vary.

Substantial penalty for early withdrawal.

Lost ticket pays maximum rate.

Your cancelled check is your receipt.

Avoid contact with skin.

Be sure each item is properly endorsed.

Sign here without admitting guilt.

Other items sold separately.

Slightly higher in California.

Employees and their families are not eligible.

Limited time offer, call now to insure prompt delivery.

No passes accepted for this engagement.

Use only in well-ventilated area.

Keep away from fire or flame.

Replace with same type.

Approved for veterans.

Booths for two or more.

Some equipment shown is optional.

Don’t try this at home.

Dispose of properly.

Prerecorded for this time zone.

Reproduction strictly prohibited.

Do not immerse.

No solicitors.

No alcohol, dogs, or horses.

List at least two alternate dates.

Record additional transactions on back of previous stub.

Price does not include taxes, title, or destination charges.

This is not a competition, it is only an exhibition.

No wagering.

AmigaTalk 9 / 28

1.9 AmigaTalk distribution:

DISTRIBUTION

~~~~~~~~~~~~

This software package is ShareWare. It may be put on any

media which is used for the distribution of ShareWare, like Public

Domain disk collections, CDROMs or FTP servers.

In order to ensure the integrity of this software package, distributors

should use the complete original distribution. The author cannot be held

responsible if this software has become unusable due to modifications

of the distribution contents or of the distribution files themselves.

There is no limit on the costs of the distribution, e.g. for the media,

like floppy disks, streamer tapes or compact disks, or the process of

duplicating. Such limits have been proven to be harmful to the idea of

shareware, i.e., instead of reducing the price of the

floppy disk below the limit, the software was simply removed from the

master disk.

Although the Author does not impose any limit on the

distribution of this software, he would like to express his personal

opinions on this matter:

* This software package should be made available to everyone free of

charge whenever it is possible (so they can send me money instead ;)).

* If you have acquired this software package under normal conditions

from a Public Domain dealer on a floppy disk at a price higher than

US $5, then you have definitely paid too much. Please don’t

support this improper profit making any longer and switch to a

less expensive source as soon as possible.

1.10 Running the system:

The AmigaTalk system is invoked by typing the command AmigaTalk

or by clicking on the AmigaTalk icon. The system is interactive - that

is, the user types an expression at the keyboard and the system responds

by evaluating the expression and typing the result. For example, typing

the expression 3 + 4 results in the value 7 being displayed in the

Status Window. Execution is terminated by selecting Quit

from the Menu. The program will open its own screen & windows.

Instance variables for the command level can be created by assigning a

value to a new variable name. Thereafter that variable can be used at



AmigaTalk 10 / 28

the command level, although it is not known within the scope of any

method loaded in the system. The variable last always contains

the value returned by the last expression typed. Figure 2 shows the

creation of a variable. Note that the assignment arrow is formed as a

two-character sequence from < and -:

newvar <- 2 / 3 (stuff you type in)

newvar

0.666667 (result displayed in Status Window)

2 raisedTo: newvar + (4 / 3)

4

last

4

Figure 2: Creating Variables

The default behavior is for the value of expressions, with the exception

of assignments, to be typed automatically as they are evaluated. This

behavior can be modified either by using the -d flag (see

Appendix 2 ), or by passing a message to the pseudo-variable

amigatalk (see Appendix 1 ).

See Also System Directives

System Configuration

1.11 System Directives:

Class descriptions must be read in from files, they cannot be entered

interactively in the GUI. Pressing the Parse button will

bring up a file requester so that the user can select a Class source file

for inclusion into the internal Class Dictionary of AmigaTalk. You can

also load a class description contained in a file named newclass.st

by typing the following system directive in the Command Line string

Gadget:

)i newclass.st

A list of files containing class descriptions can also be given as

arguments to the AmigaTalk command (CLI only!). The command

AmigaTalk file1 ... filen

is equivalent to the sequence

)i file1

...

)i filen

being typed into the Command Line Gadget.



AmigaTalk 11 / 28

See Also,

)e filename Invoke the editor.

)g filename Parse & Load a Class.

)i filename Parse & Load a Class.

)r filename Read Commands file.

)l filename Load Saved Image.

)s filename Save System Image.

)! command Execute a CLI command.

1.12 Parse Button Behavior:

The Parse button will ask for the file you want to parse using the

ubiquitous ASL file requester. It then issues a )i system directive

so that AmigaTalk will include the file class contents in memory. The

file will be parsed & added to the AmigaTalk internal Class dictionary.

Be sure that the file has already been debugged, since the parser has

no way of returning error notices to the AmigaTalk screen. You can do

this by typing a command into a Shell or CLI:

AmigaTalk:c/Parse <myClass.st >myClass.p

The parser will send error strings back to the Shell or CLI.

1.13 Format for Env file:

1.14 AmigaTalk icon ToolTypes:

The following ToolTypes can be specified in the AmigaTalk icon:

ToolType: Default Values:

DisplayEnvFile =AmigaTalk:AmigaTalk.env (See File Format ).

Editor =C:Ed

DefaultEnvFile =AmigaTalk:Prelude/standard

LibraryPath =AmigaTalk:CodeLib/

ParserName =AmigaTalk:c/Parse

CommandPath =[AmigaTalk:c/]

HelpPath =[AmigaTalk:Help/]

HelpProgram =MultiView

GeneralPath =[AmigaTalk:General/]

IntuitionPath =[AmigaTalk:Intuition/]

SystemPath =[AmigaTalk:System/]

UserPath =[AmigaTalk:User/]



AmigaTalk 12 / 28

ARexxPortName =[AmigaTalk_Rexx]

DefaultTabSize =[3] (Not currently used).

StatusHistoryLength =[20] (Not currently used).

ColorsFile =[AmigaTalk:AmigaTalk.colors]

LogoName =AmigaTalk.iff

LogoCmd =DisplayLogo

See Also, TheBrowser ToolTypes

1.15 System Directive )e (Editor):

Note that the )e system directive invokes an editor on a file containing

class descriptions, and then automatically includes the file when the

editor is exited. Classes also respond to the message edit, which

will have the same effect as the )e directive applied to the

file containing the class description. Thus the typical debug/edit/debug

cycle involves repeated uses of the )e directive or the edit mes-

sage until a desired outcome is achieved. The editor invoked by the

)e directive can be changed by setting the EDITOR=

ToolType in the AmigaTalk icon.

_____________________________________________________________

)e filename

Edit the named file. The AmigaTalk system will suspend,

leaving the user in an editor for making changes to the

named file. Upon leaving the editor, the named file will

automatically be included, as if the )i system

directive had been typed.

1.16 System Directive )g (Read):

NOTE: This system directive command is similar to )r, except that

it searches AmigaTalk:CodeLib/ for the file to read in.

)g filename

Search for an entry in the system library area matching the filename.

If found, the class descriptions in the library entry are included.

This command is useful for including commonly used classes that are

not part of the standard prelude, such as classes for statistics

applications or graphics.

See Also )r (Read)



AmigaTalk 13 / 28

1.17 System Directive )i (Include class):

)i filename

Include the named file. The file must contain one or more class

descriptions. The class descriptions are parsed, and if syntactically

legal, new instances of the classes are added to the AmigaTalk system.

WARNING: No error messages from the parser will be returned to you.

you must parse the class file from a Shell or CLI, in order

to make sure that it’s syntactically legal.

1.18 System Directive )l (Load):

WARNING: This command is NOT currently implemented!

)l filename

Load a previously saved environment from the named file. The current

values of all variables are overridden. The file must have been created

using the )s directive.

1.19 System Directive )r (Read):

NOTE: This system directive command is similar to )g, except that

it does NOT search AmigaTalk:CodeLib/ for the file to read in.

)r filename

Read the named file. The file must contain AmigaTalk statements, as

they would be typed at the keyboard. The effect is just as if the

lines of the file had been typed at the keyboard. The file cannot

contain class descriptions.

NOTE: This operation can also be performed by selecting the Load menu

item from the menu.

See Also )g (Read)

1.20 System Directive )s (Save):

WARNING: This command is NOT currently implemented!

)s filename

Save the current state in the named file. The values of all variables

are saved, and can later be reloaded using the )l directive.



AmigaTalk 14 / 28

1.21 System Directive )! (Shell):

)!string

Execute the remainder of the line following the exclamation point as an

AmigaDOS command. Nothing is done with the output of the command, nor

is the returning status of the command recorded.

1.22 System Differences:

Differences between AmigaTalk & the Smalltalk-80 system:

This section describes the differences between the language accepted by

the AmigaTalk system and the language described in Smalltalk blue.

The principal reasons for these changes are as follows:

size

Classes which are largely unnecessary, or which could be easily

simulated by other classes (e.g. Association, SortedCollection)

have been eliminated in the interest of keeping the size of the

standard library as small as possible. Similarly, indexed instance

variables are not supported, since to do so would increase the size

of every object in the system, and they can be easily simulated in

those classes in which they are important (see below).

representation

The need for a textual representation for class descriptions required

some small additions to the syntax for class methods (see Appendix 3).

Similarly, the fact that classes and subclasses can be separately

parsed, in either order, forced some changes in the scoping rules for

instance variables.

The following sections describe these changes in more detail:

3.1. Internal Representation Different

The internal representations of objects, including processes, inter-

preters, and bytecodes, is entirely different in the AmigaTalk system

from the Smalltalk-80 system described in AmigaTalk blue.

If you read A Little Smalltalk, AmigaTalk is pretty much the same

system, except that there are more defined primitives, allowing the

full use of the Amiga Operating System.

3.2. FewerClasses

Many of the classes described in Smalltalk blue are not included as

part of the AmigaTalk basic system. Some of these are not necessary

because of the interest in keeping the standard library of classes small.



AmigaTalk 15 / 28

A complete list of included classes for the AmigaTalk system is given in

Appendix 1 .

3.3. No Class Protocol

Protocol for all classes is defined as part of class Class. It is not

possible to redefine class protocol as part of a class description, only

instance protocol. The notion of metaclasses is not supported.

3.4. Cascades Different

The semantics of cascades has been simplified and generalized. The

result of a cascaded expression is always the result of the expression

to the left of the first semicolon, which is also the receiver for each

subsequent continuation. Continuations can include multiple messages.

A rather non-sensical, but illustrative, example is the following:

2 + 3 ; - 7 + 3 ; * 4

The result of this expression is 5 (the value yielded by 2 + 3). 5 is

also the receiver for the message - 7, and that result (-2) is in turn

the receiver for the message + 3. This last result is thrown away. 5

is then again used as the receiver for the message * 4, the result of

which is also thrown away.

3.5. Instance Variable Name Scope

In the language described in Smalltalk blue, an instance variable is

known not only to the class protocol in which it is declared, but is

also valid in methods defined for any subclasses of that class. In the

AmigaTalk system an instance variable can be referenced only within the

protocol for the class in which it is declared.

3.6. Indexed Instance Variables

Implicitly defined indexed instance variables are not supported. In any

class for which these are desired they can be easily simulated by

including an additional instance variable, containing an Array, and

including the following methods:

Class Whatever

! indexVars !

[

new: size

indexVars <- Array new: size

|

at: location

ˆ indexVars at: location

|

at: location put: value



AmigaTalk 16 / 28

indexVars at: location put: value

...

]

The message new: can be used with any class, with an effect similar to

new. That is, if a new instance of the class is created by sending the

message new: to the class variable, the message is immediately passed on

to the new instance, and the result returned is used as the result of

the creation message.

3.7. No Pool Variables

The concepts of pool variables, global variables, or class variables

are not supported. In their place there is a new pseudo-variable,

amigatalk, which responds to the messages at: and at:put:. The

keys for this collection can be arbitrary. Although this facility is

available, its use is often a sign of poor program design, and should

be avoided.

3.8. No Associations

The class Dictionary stores keys and values separately, rather than as

instances of Association. The class Association, and all messages

referring to Associations have been removed. Creating an Association

Class is left as an exercise for the user ;)

3.9. Generators in place of Streams

The notion of stream has been replaced by the slightly different notion

of generators, in particular the use of the messages first and next

in subclasses of Collection. External files are supported by an

explicit class File.

3.10. Primitives Different

Both the syntax and the use of primitives has been changed. Primitives

provide an interface between the AmigaTalk world and the underlying

Amiga operating system, permitting the execution of operations that can-

not be specified in AmigaTalk. In AmigaTalk, primitives cannot fail and

must return a value (although they may, in error situations, print an

error message and return nil). The syntax for primitives has been

altered to permit the specification of primitives with an arbitrary

number of arguments. The format for a primitive call is as follows:

<primitive number argumentlist>

Where "number" is the number of the primitive to be executed (which must

be a value between 1 and 255, 0 does nothing), and "argumentlist" is a

list of AmigaTalk primary expressions (see Appendix 2 ). Appendix 4 lists

the meanings of each of the currently recognized primitive numbers.



AmigaTalk 17 / 28

3.11. Byte Arrays

A new syntax has been created for defining an array composed entirely of

unsigned integers in the range 0-255. These arrays are given a very

tight encoding. The syntax is a pound sign, followed by a left square

brace, followed by a sequence of numbers in the range 0 to 255, followed

by a right square brace.

#[ numbers ]

Byte Arrays are used extensively inside the AmigaTalk system.

3.12. New Pseudo-Variables

In addition to the pseudo-variable amigatalk already mentioned, another

pseudo-variable, selfProcess, has been added to the AmigaTalk system.

selfProcess returns the currently executing process, which can then be

passed as an argument to a semaphore, or be used as a receiver for a

message valid for class Process. Like self and super, selfProcess can-

not be used at the command level.

3.13. No Dependency

The notion of dependency, and automatic dependency updating, is not

included in AmigaTalk.

1.23 Appendix 1 - Class Descriptions:

The messages accepted by the classes included in the AmigaTalk standard

library are described in the following pages. A list of the classes

defined, where indentation is used to imply subclassing, is given below:

Object

UndefinedObject

Symbol

Boolean

True

False

Magnitude

Char

Number

Integer

Float

Radian

Point

Random

Collection



AmigaTalk 18 / 28

Bag

Set

KeyedCollection

Dictionary

AmigaTalk

File

SequenceableCollection

Interval

LinkedList

Semaphore

File

ArrayedCollection

Array

ByteArray

String

Block

Class

Process

Pen

In the descriptions of each message the following notes may occur:

d Indicates the effect of the message differs slightly from that

given in Smalltalk blue.

n Indicates the message is not included as part of the language

defined in Smalltalk blue.

r Indicates the protocol for the message overrides a protocol given

in some superclass. Only where the logical effect of this over-

riding is important is the message given a second time; some

messages, such as copy, are overridden in many classes but are not

described in the documentation because the logical effect remains

the same.

1.24 Appendix 2 - Manual page:

AmigaTalk(1) (local) AmigaTalk(1)

NAME

AmigaTalk - a derivative of Little Smalltalk

SYNOPSIS

AmigaTalk [options] [files]

DESCRIPTION



AmigaTalk 19 / 28

AmigaTalk is an interpreter for a Smalltalk-like language.

For a complete description of the language accepted by the

interpreter see the user manual. Options accepted on the

command line (CLI) are as follows:

-h Print usage information.

-i Display Logo window (Default = OFF).

-a If the -a option is given statistics on the number of

memory allocations will be displayed following

execution.

-d digit

If the "digit" is zero only those results explicitly

requested by the user will be printed. If 1, the

values of expressions typed at the keyboard will be

displayed (this is the default). If 2, the values of

expressions and the values assigned in assignment

statements will be displayed.

-g The next argument is taken to be the name of an

additional library stored in the system library area

(see LibraryPath ToolType).

The library is loaded following the standard prelude,

just as if a )g directive were given at the

beginning of execution.

-n The -n option, if given, suppresses the loading of the

standard library. As this gives you a system with

almost no functionality, it is seldom useful except

during debugging.

-z print lexical analyzer debugging statements.

-b No Status Window (Default = ON).

-r The next argument is taken to be the name of a file of

Smalltalk commands. The file is included prior to

execution, just as if a )r directive were given at

the beginning of execution.

-s In normal operation, at the end of execution the number

of reference count increments and decrements is printed

just prior to exit. In the absence of cycles these two

figures should be equal. Since cycles can cause large

chunks of memory to become unreachable, and seriously

degrade performance, this information is often useful

in debugging. The -s option, if given, suppresses the



AmigaTalk 20 / 28

printing of this information.

The following options are best left untried, since fast loading

and reading & saving of binary images of the internal system

state are not currently implemented:

-l The next argument is taken to be the name of a file

containing a binary image saved using the )s directive

(see below). This binary image is loaded prior to

execution.

-m Do not perform fast loading. (Used when fastloading is

the default).

-f The -f option indicates fast loading should be used,

which loads a binary save image (see ``)s” below) for

the standard library.

The files, if given, must contain class descriptions.

Consult the reference manual for the syntax for class descriptions.

The classes defined are included along with the standard library of

classes before execution begins.

Once execution begins, the Status Window will display

Welcome to AmigaTalk!

indicating that the system is ready for a command to be entered.

A command consists of a valid Smalltalk expression, without a

terminating period. As each expression is entered it is executed

by the Smalltalk interpreter, and the results displayed.

The following system directives can be entered in place of

commands:

)e filename

Edit the named file, which must contain only class descriptions.

The AmigaTalk system will suspend, leaving the user in an editor

for making changes to the named file. Upon exiting the editor,

the named file will automatically be included, as with the )i

directive (below). The editor chosen by this command is taken

from the Editor ToolType in the AmigaTalk icon.

)g filename

Search for a file with the given name in the system library area.

If found, load the library in with the users classes. This is

useful for creating libraries of commonly used classes which are

not part of the standard prelude, such as classes for statistics

applications or for graphics.

)i filename



AmigaTalk 21 / 28

Include the named file. The File must contain one or more class

descriptions. The class descriptions are parsed, and if syntact-

ically legal, new instances of the classes are added to the

AmigaTalk system.

)r filename

Read the named file. The effect is just as if the lines in the

file had been typed at the keyboard. The file cannot contain

class descriptions.

)!string

Execute the string following the exclamation point as a

system command.

The following options are best left untried, since reading &

saving of binary images of the internal system state are not

currently implemented:

)l filename

Load a saved binary environment. The file must have been prev-

iously created using the )s directive (below). The values of all

variables are overridden.

)s filename

Save the current environment in the named file. The values of all

variables will be saved, and can later be restored using the

)l directive (above).

Author

James T. Steichen, for the Amiga-specific code &

Tim Budd, Department of Computer Science, The University of

Arizona, for the original Little Smalltalk programming system.

See Also

Timothy A. Budd, "A Little Smalltalk Users Manual" &

"A Little Smalltalk" by Timothy A. Budd, Addison Wesley, 1987

Bugs

Not all the Smalltalk-80 Language described in the Blue Book

is supported; see the user manual for details. (Smalltalk-

80 is a trademark of Xerox Corporation).

1.25 Appendix 3:

The following is an example class description:

Class Set :Collection

! dict !



AmigaTalk 22 / 28

[

new

dict <- Dictionary new

|

add: newElement

dict at: newElement

ifAbsent: [dict at: newElement put: 1]

|

remove: oldElement ifAbsent: exceptionBlock

dict removeKey: oldElement ifAbsent: exceptionBlock

|

size

ˆ dict size

|

occurrencesOf: anElement

ˆ dict at: anElement ifAbsent: [0]

|

first

dict first.

ˆ dict currentKey

|

next

dict next.

ˆ dict currentKey

]

1.26 Appendix 4 - Primitive Numbers:

The following list gives the function performed by each primitive in

the AmigaTalk system.

Information about objects:

0 (not used )

1 class of an object

2 superobject of an object

3 test if class responds to new

4 size of object

5 hash value

6 test if two built-in objects are of the same type

7 object equality testing ( == )



AmigaTalk 23 / 28

8 various switch toggles

9 numerical generality testing

Integer Manipulation:

10 integer addition (both args must be integer)

11 integer subtraction

12 integer < test

13 integer > test

14 integer <_ test

15 integer >_ test

16 integer = test

17 integer ~= test

18 integer multiplication

19 integer //

Bit Manipulation & other integer-valued functions:

20 gcd:

21 bitAt:

22 bitOr:

23 bitAnd:

24 bitXor:

25 bitShift:

26 radix:

27 not used

28 integer quo:

29 integer rem:

Other integer functions:

30 doPrimitive:withArguments:

31 not used

32 convert random integer to random float

33 bitInvert

34 highBit

35 randomNumber (argument is seed )

36 asCharacter

37 asString

38 factorial

39 asFloat

Character manipulation:

40 not used

41. not used

42 character < test



AmigaTalk 24 / 28

43 character > test

44 character <_ test

45 character >_ test

46 character = test

47 character ~= test

48 not used

49 not used

Character unary functions:

50 digitValue

51 isVowel

52 isLetter

53 isLowerCase

54 isUpperCase

55 isSeparator

56 isAlphaNumeric

57 caseShift

58 asString

59 asciiValue

Floating point manipulation:

60 floating point addition (both args must be float)

61 floating point subtraction

62 floating point < test

63 floating point > test

64 floating point <_ test

65 floating point >_ test

66 floating point = test

67 floating point ~= test

68 floating point multiplication

69 floating point division

Other floating point operations:

70 ln

71 sqrt

72 floor

73 ceiling

74 not used

75 integerPart

76 fractionalPart

77 gamma

78 asString



AmigaTalk 25 / 28

79 exp

Other numerical functions:

80 normalize number to be within 0 and 2 * pi.

81 sin

82 cos

83 not used

84 arcSin

85 arcCos

86 arcTan

87 not used

88 raisedTo:

89 radix:

Symbol Commands:

90. not used

91 symbol comparison, returns true or false.

92 printString

93 asString

94 print (used internally)

95 not used

96 not used

97 build a new class, arguments are class name, superclass

name, source filename, instance variables, messages, methods,

context size & maximum stack size (eight arguments!).

98 insert an object into class dictionary, first argument

is symbol, second argument is class definition

99 find an object in class dictionary. argument is symbol.

String operations:

100 string length

101 string compare, case important - return -1, 0 or 1.

102 string compare, case not important

103 string catenation

104 string at:

105 string at:put:

106 copyFrom:length:

107 copy (new string with same chars)

108 asSymbol

109 string printString

Array manipulation:

110 build an untyped object of given size, argument is



AmigaTalk 26 / 28

integer size.

111 index variable get (first argument is object, second is

index)

112 index variable put (first argument is object, second is

index, third argument is expression)

113 object grow (returns a new object with same instance

variable values as first argument, but with second

argument tacked on end as new instance variable)

114 build an instance of "Array" of the given size.

115 new string of given size

116 ByteArray new:

117 ByteArray size

118 ByteArray at:

119 ByteArray at:put:

Output & error messages:

120 print string with no return

121 print string with return

122 general error - first argument is receiver, second is

error string.

123 print string on error output (with return)

124 Curses library interface primitives.

See Curses interface for more information.

125 unix system call

126 print a string at a specific point on the terminal.

See Curses interface for more information.

127 block return without surrounding context

128 reference count less than zero, first argument is

guilty object.

129 does not respond error, first argument is receiver,

second is message.

File operations:

130 file open, first argument is name, second argument is

mode

131 file read

132 file write

133 set file mode, first argument is file, second is mode

indicator (anInteger)

134 compute file size in bytes

135 file set location (at:) second argument is location



AmigaTalk 27 / 28

(anInteger)

136 return current file offset in bytes

137 not used

138 not used

139 not used

Process management:

NOTE: This is NOT the same as Exec Processes that are utilized by the

Amiga OS.

140 block execute (trapped by interpreter)

141 new process (withArguments:)

142 terminate a process

143 perform:withArguments: (trapped by interpreter)

144. not used

145 set state

146 return state

148 start atomic action

149 end atomic action

Operations on classes:

150 class edit

151 superclass of a class

152 class name (a Symbol)

153 new instance of a class

154 list all commands class responds to

155 respondsTo: , second argument is a symbol

156 class view (drop into editor, but no include)

157 class list

158 variables (returns an array of symbols)

159 get ByteCode representation of method.

Date & Time:

160 current date and time as string

161 seconds time counter

162 clear the screen (Curses function)

Plot(3) interface: (Only 20 (max) Allowed at one time!)

NOTE: These primitives have been re-worked so that they are

Amiga-specific. So DON’T expect any code you write to be

portable!

169 Open, CLose or Move a PlotEnv Window.

170 clear the Plot window.

171 move the Plotting Pen.



AmigaTalk 28 / 28

172 draw a line from the current location to the given location.

173 draw a point at the given location.

174 draw a circle.

175 draw a box (Box( x0, y0, x1, y1 ))

176 set the drawing pens to Color registers. (pens( front, back ))

177 draw a line (line( x1, y1, x2, y2 ))

178 print a label (label( string, x, y ))

179 establish a line type (SetDrPt( bitPattern ))

Primitives 180 through 255 are purposely NOT documented here, since

they are used to provide the functionality of the Amiga OS to the

AmigaTalk system. You can probably figure out what they are from

the Smalltalk files in the Intuiion/ & System/ directories if you

are determined to pirate the knowledge; but I have a better idea for

you - why not re-write & improve the Classes as I’ve defined them?

1.27 Author Information:

If your conscience is bugging you to contribute some cash for my

programming efforts, please send $5 or more for the program to:

The Author:

James T. Steichen (A real cool frood!)

2217 N. Tamarack Dr.

Slayton, Mn. 56172-1155 (USA)

email: jsteic1957@aol.com (best place to send bug reports)

AmigaTalk was written in C from the Original Source code for

Little Smalltalk V1.0 using the SAS C compiler V6.58.

TheBrowser was written using CanDo! V3.008 by InovaTronics.

1.28 Bibliography:

This is only a partial list of books available on Smalltalk &

Little Smalltalk:

A Little Smalltalk by Timothy Budd, Addison Wesley, 1987

ISBN: 0-201-10698-1

Smalltalk-80, The Language by Adele Goldberg & David Robson,

Addison Wesley, 1989 (the Purple book)

ISBN: 0-201-13688-0

Smalltalk-80, The Language & its Implementation

by Adele Goldberg & David Robson, (the Blue book).

Addison Wesley, 1983

Smalltalk-80, The Interactive Programming Environment

by Adele Goldberg & David Robson, (the Orange book).

Addison Wesley, 1983


	AmigaTalk
	AmigaTalk© 1998-2000 User Manual:
	Unfinished business:
	User Classes for AmigaTalk© 1998:
	Bugs known to the Author of AmigaTalk:
	File System Configuration:
	AmigaTalk requirements:
	NO warranty for AmigaTalk:
	If it don't work, you're to blame:
	AmigaTalk distribution:
	Running the system:
	System Directives:
	Parse Button Behavior:
	Format for Env file:
	AmigaTalk icon ToolTypes:
	System Directive )e (Editor):
	System Directive )g (Read):
	System Directive )i (Include class):
	System Directive )l (Load):
	System Directive )r (Read):
	System Directive )s (Save):
	System Directive )! (Shell):
	System Differences:
	Appendix 1 - Class Descriptions:
	Appendix 2 - Manual page:
	Appendix 3:
	Appendix 4 - Primitive Numbers:
	Author Information:
	Bibliography:


